Photo of Hennie Daniels

Hennie Daniels

prof.dr.ir.

  • Warandelaan 2, Koopmans Building, room K 822

    5037 AB Tilburg

    Netherlands

1988 …2018
If you made any changes in Pure these will be visible here soon.

Research Output 1988 2018

2018

Combining open data and machine learning to predict food security in Ethiopia

van der Heijden, W., van den Homberg, M., Marijnis, M., de Graaff, M. & Daniels, H., Jul 2018.

Research output: Contribution to conferencePaperOther research output

Learning systems
Labels
Costs

Data driven fraud detection in international shipping

Triepels, R., Daniels, H. & Feelders, A. J., Jun 2018, In : Expert Systems with Applications. 99, p. 193-202

Research output: Contribution to journalArticleScientificpeer-review

Freight transportation
Bayesian networks
Topology
Personnel
Industry

Detection and explanation of anomalies in real-time gross settlement systems by lossy data compression

Triepels, R., Daniels, H. & Heijmans, R., 2018, (Accepted/In press) tba. Heidelberg: Springer Verlag, (Lecture Notes in Computer Science).

Research output: Chapter in Book/Report/Conference proceedingChapterScientificpeer-review

Detection and explanation of anomalous payment behavior in real-time gross settlement systems

Triepels, R., Daniels, H. & Heijmans, R., 2018, Enterprise Information Systems: 19th International Conference, ICEIS 2017. Hammoudi, S., Smialek, M., Camp, O. & Filipe, J. (eds.). Cham: Springer Verlag, p. 145-161 (Lecture Notes in Business Information Processing; vol. 321).

Research output: Chapter in Book/Report/Conference proceedingConference contributionScientificpeer-review

Sensitivity analysis in OLAP databases

Caron, E. & Daniels, H., 2018, Proceedings of the 20th International Conference on Enterprise Information Systems (ICEIS 2018). Madeira: SciTePress, p. 221-228

Research output: Chapter in Book/Report/Conference proceedingConference contributionScientificpeer-review

Open Access
Online Analytical Processing
Sensitivity Analysis
System of equations
Implicit Function Theorem
Business Model
2017

Anomaly detection in real-time gross payment data

Triepels, R., Daniels, H. & Heijmans, R., 2017, Proceedings of the 19th International Conference on Enterprise Information Systems (ICEIS 2017). Camp, O. & Filipe, J. (eds.). SciTePress, p. 433-441

Research output: Chapter in Book/Report/Conference proceedingConference contributionScientificpeer-review

Anomaly detection in real-time gross payment data

Triepels, R., Daniels, H. & Heijmans, R., Jun 2017.

Research output: Contribution to conferencePaperOther research output

37 Downloads (Pure)

Cyclical patterns in risk indicators based on financial market infrastructure transaction data

Timmermans, M., Heijmans, R. & Daniels, H., 9 Jun 2017, Amsterdam: De Nederlandsche Bank, 29 p. (DNB Working Papers; vol. 558).

Research output: Working paperOther research output

Open Access
File
Financial markets
Transaction data
State-space model
2016

A comparison of three models to predict liquidity flows between banks based on daily payments transactions

Triepels, R. & Daniels, H., Aug 2016.

Research output: Contribution to conferenceAbstractOther research output

348 Downloads (Pure)

A Comparison of Three Models to Predict Liquidity Flows between Banks Based on Daily Payments Transactions

Triepels, R. & Daniels, H., 7 Sep 2016, Tilburg: Information Management, 15 p. (CentER Discussion Paper; vol. 2016-037).

Research output: Working paperDiscussion paperOther research output

File
Payment
Liquidity
Dynamic systems
Moving average
Prediction

Identification of organization name variants in large databases using rule-based scoring and clustering: With a case study on the Web of Science database

Caron, E. A. M. & Daniels, H., 2016, 18th International Conference on Enterprise Information Systems (ICEIS 2016). Rome, Italy: SciTePress, Vol. 1. p. 182-187

Research output: Chapter in Book/Report/Conference proceedingConference contributionScientificpeer-review

Supervision of financial market infrastructures using temporal network analysis

Triepels, R. & Daniels, H., Jun 2016.

Research output: Contribution to conferenceAbstractOther research output

2015

Detecting shipping fraud in global supply chains using probabilistic trajectory classification

Triepels, R. & Daniels, H., 2015, Proceedings of the 17th International Conference on Enterprise Information Systems (ICEIS 2015): Doctoral Consortium. p. 12-19

Research output: Chapter in Book/Report/Conference proceedingConference contributionScientificpeer-review

Freight transportation
Supply chains
Trajectories
Data mining
Classifiers

Uncovering document fraud in maritime freight transport based on probabilistic classification

Triepels, R., Feelders, A. F. & Daniels, H., 2015, Lecture Notes in Computer Science. Springer Verlag, Vol. 9339. p. 282-293 12 p.

Research output: Chapter in Book/Report/Conference proceedingChapterScientificpeer-review

Freight transportation
Supply chains
Visibility
Data mining
Trajectories
2014

A non-parametric test for partial monotonicity in multiple regression

van Beek, M. & Daniëls, H. A. M., Jun 2014, In : Computational Economics. 44, 1, p. 87-100

Research output: Contribution to journalArticleScientificpeer-review

Monotonicity
Nonparametric test
Multiple regression
Simulation
Ceteris paribus

Auditing data reliability in international logistics: An application of bayesian networks

Liu, L., Daniels, H. A. M. & Triepels, R. J. M. A., 2014, Proceedings of the 16th International Conference on Enterprise Information Systems (ICEIS 2014). Hammoudi, S., Maciaszek, L. & Cordeiro, J. (eds.). Lisbon, p. 707-712

Research output: Chapter in Book/Report/Conference proceedingConference contributionScientificpeer-review

Bayesian networks
Logistics
Industry
Risk management

Business intelligence for improving supply chain risk management

Liu, L., Daniels, H. A. M., van Oosterhout, M. & van Dalen, J., 2014, In : International Journal of Advanced Logistics. 2, 2, p. 18-29

Research output: Contribution to journalArticleScientificpeer-review

Business intelligence
Management control
Supply risk management
Risk management
Analysts

Business intelligence for improving supply chain risk management

Liu, L., Daniels, H. A. M. & Hofman, W., 2014, Enterprise Information Systems: Revised Selected Papers, ICEIS 2013. Hammoudi, S., Cordeiro, J., Maciaszek, L. A. & Filipe, J. (eds.). Heidelberg: Springer Verlag, Vol. 190. p. 190-205 (Lecture Notes in Business Information Processing; vol. 190).

Research output: Chapter in Book/Report/Conference proceedingChapterScientificpeer-review

Business intelligence
Management control
Supply risk management
Diagnostics
Analysts
2013

Analysis for detecting and explaining exceptions in business data

Liu, L. & Daniëls, H. A. M., 2013, Proceedings of the 26th Bled eConference. Lux Wigand, D. & et al (eds.). Bled: Unknown Publisher, p. 349-358

Research output: Chapter in Book/Report/Conference proceedingConference contributionScientificpeer-review

Competitive intelligence
Industry

Detecting and explaining business exceptions for risk assessment

Liu, L., Daniëls, H. A. M. & Hofman, W., 2013, Proceedings of the 15th International Conference on Enterprise Information Systems (ICEIS 2013). Hammoudi, S., Maciaszek, L., Cordeiro, J. & Dietz, J. (eds.). Angers, France: Springer Verlag, Vol. 1. p. 442-447 (Lecture Notes in Business Information Processing; vol. 1).

Research output: Chapter in Book/Report/Conference proceedingConference contributionScientificpeer-review

Risk assessment
Competitive intelligence
Risk analysis
Industry

Explanatory analysis for risk management

Liu, L. & Daniels, H., Feb 2013, Proceedings of the 7th International Workshop on Value Modeling and Business Ontology. Delft: TU Delft

Research output: Chapter in Book/Report/Conference proceedingChapterProfessional

Explanatory analytics in OLAP

Caron, E. A. M. & Daniëls, H. A. M., 2013, In : International Journal of Business Intelligence Research. 4, 3, p. 67-82

Research output: Contribution to journalArticleScientificpeer-review

Industry
Sales
Information systems
Availability
Statistical Models
2012

A business intelligence framework for risk assessment in business networks

Liu, L., Daniels, H. & Weigand, H., Jun 2012.

Research output: Contribution to conferencePosterOther research output

Explanatory analysis in business intelligence systems

Caron, E. A. M. & Daniëls, H. A. M., 2012, Proceedings of the 20th European Conference on Information System (ECIS 2012). Dinter, B. & Smolnik, S. (eds.). Barcelona: Unknown Publisher, p. 77-89

Research output: Chapter in Book/Report/Conference proceedingConference contributionScientificpeer-review

Competitive intelligence
Sales
Information systems
Availability
Industry

Towards a value model for collaborative, business intelligence-supported risk assessment

Liu, L. & Daniëls, H. A. M., 2012, Proceedings of the 6th International Workshop on Value Modeling and Business Ontology (VMBO2012). Johannesson, P. (ed.). Vienna: Unknown Publisher, 5 p.

Research output: Chapter in Book/Report/Conference proceedingConference contributionScientificpeer-review

Business intelligence
Risk assessment
Incentive schemes
Business networks
Incentives
2011

Analysis of variance in OLAP information systems

Daniëls, H. A. M. & Caron, E. A. M., 2011, Proceedings of the 8th International conference on Computational Management Science (CMS2011). Neuchâtel: Computer Science Department, University of Neuchâtel, p. 18

Research output: Chapter in Book/Report/Conference proceedingConference contributionScientificpeer-review

Towards a Value-Based Method for Risk Assessment in Supply Chain Operations

Liu, L. & Daniëls, H. A. M., 2011, Rotterdam: ERIM. 3 p. (ERIM Report Series; no. ERS-2011-014-LIS)

Research output: Book/ReportReportProfessional

2010
Neural Networks (Computer)
Neural networks
Multilayer neural networks

Monotone and partially monotone neural networks

Daniëls, H. A. M. & Velikova, M. V., 2010, In : IEEE Transactions on Neural Networks. 21, 6, p. 906-917

Research output: Contribution to journalArticleScientificpeer-review

Neural networks

What-if analysis in OLAP, with a case study in supermarket sales data

Caron, E. A. M. & Daniëls, H. A. M., 2010, Proceedings of the 12th International Conference on Enterprise Information Systems (ICEIS 2010). Cordeiro, J. (ed.). Berlin: Springer Verlag, p. 208-213

Research output: Chapter in Book/Report/Conference proceedingConference contributionScientificpeer-review

2009

Automated explanation of financial data

Daniëls, H. A. M. & Caron, E. A. M., 2009, In : International Journal of Intelligent Systems in Accounting Finance & Management. 16, p. 5-19

Research output: Contribution to journalArticleScientificpeer-review

Financial data
Retail
Diagnostics
Statistics
Methodology

Business analysis in the OLAP context

Caron, E. A. M. & Daniëls, H. A. M., 2009, Proceedings of the 11th International Conference on Enterprise Information Systems (ICEIS 2009). Berlin: Springer Verlag, p. 325-331

Research output: Chapter in Book/Report/Conference proceedingConference contributionScientificpeer-review

On testing monotonicity of datasets

Velikova, M. V. & Daniëls, H. A. M., 2009, Proceedings of the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD 2009). Potharst, R. & Feelders, A. (eds.). Unknown Publisher, p. 11-23

Research output: Chapter in Book/Report/Conference proceedingConference contributionScientificpeer-review

2008

Explanation of exceptional values in multidimensional databases

Caron, E. A. M. & Daniëls, H. A. M., 2008, In : European Journal of Operational Research. 188, 3, p. 884-897

Research output: Contribution to journalArticleScientificpeer-review

Online Analytical Processing
Managers
Multidimensional Model
Multidimensional Data
Methodology

Extensions to the OLAP framework for business analysis

Caron, E. A. M. & Daniëls, H. A. M., 2008, Proceedings of the 3rd International Conference on Software and Data Technologies (ICSOFT). Cordeiro, J. & Ranchordas, A. (eds.). Berlin: Springer Verlag, p. 240-247

Research output: Chapter in Book/Report/Conference proceedingConference contributionScientificpeer-review

Processing
Industry
Sensitivity analysis
Managers
Agglomeration

Monotone Prediction Models in Data Mining

Velikova, M. V. & Daniëls, H. A. M., 2008, Saarbrucken: VDM Verlag. 216 p.

Research output: Book/ReportBookScientific

Partially monotone networks applied to breast cancer detection on mammograms

Velikova, M. V., Daniëls, H. A. M. & Samulski, M., 2008, Proceedings of the 18th International Conference on Artificial Neural Networks (ICANN 2008). Kurkova-Pohlova, V., Neruda, R. & Koutnik, J. (eds.). Heidelberg: Springer Verlag, Vol. 5163. p. 917-926 (Lecture Notes in Computer Science; vol. 5163).

Research output: Chapter in Book/Report/Conference proceedingConference contributionScientificpeer-review

2007

Explanation generation in business performance models, with a case study in competition benchmarking

Daniëls, H. A. M. & Caron, E. A. M., 2007, Proceedings of the 9th International Conference on Enterprise Information Systems, Vol. 2. Cardoso, J., Cordeiro, J. & Filipe, J. (eds.). Spain: University of Madeira, p. 99-128

Research output: Chapter in Book/Report/Conference proceedingChapterScientificpeer-review

2006

Derivation of monotone decision models from noisy data

Daniëls, H. A. M. & Velikova, M. V., 2006, In : IEEE Transactions on Systems, Man and Cybernetics C Applications and Reviews. 36, 5, p. 705-710

Research output: Contribution to journalArticleScientificpeer-review

Mixtures of monotone networks for prediction

Velikova, M. V., Daniëls, H. A. M. & Feelders, A. J., 2006, In : International Journal of Computational Intelligence. 3, 3, p. 205-214

Research output: Contribution to journalArticleScientificpeer-review

Portfolio optimization as a tool for knowledge management

Daniëls, H. A. M. & Smits, M. T., 2006, Operations Research Proceedings 2005. Haasis, H. D., Kopfer, H. & Schonberger, J. (eds.). Berlin: Springer Verlag, p. 633-639 822 p.

Research output: Chapter in Book/Report/Conference proceedingConference contributionScientificpeer-review

Solving partially monotone problems with neural networks

Velikova, M. V., Daniëls, H. A. M. & Feelders, A. J., 2006, In : Enformatika: Transactions on Engineering Computing and Technology. 12, p. 82-87

Research output: Contribution to journalArticleScientificpeer-review

2005

Automated business diagnosis in the OLAP context

Caron, E. A. M. & Daniëls, H. A. M., 2005, Operations Research Proceedings 2004. Fleuren, H. A., den Hertog, D. & Kort, P. M. (eds.). Springer Verlag, p. 425-433 486 p.

Research output: Chapter in Book/Report/Conference proceedingChapterScientificpeer-review

Project selection based on intellectual capital scorecards

Daniëls, H. A. M. & Noordhuis, H., 2005, In : International Journal of Intelligent Systems in Accounting Finance & Management. 13, p. 27-32 5 p.

Research output: Contribution to journalArticleScientificpeer-review

2004

Decision trees for monotone price models

Velikova, M. V. & Daniëls, H. A. M., 2004, In : Computational Management Science. 1, 3-4, p. 231-244 13 p.

Research output: Contribution to journalArticleScientificpeer-review

Diagnosis in the OLAP Context

Caron, E. A. M. & Daniëls, H. A. M., 2004, Rotterdam: ERIM. 18 p. (ERIM Research Paper; no. 2004-063-L)

Research output: Book/ReportReportProfessional

Extending the OLAP Framework for Automated Explanatory Tasks

Caron, E. & Daniels, H., 2004. 1 p.

Research output: Contribution to conferenceAbstractOther research output

2003

Combining Expert Knowledge and Databases for Risk Management

Daniëls, H. A. M. & van Dissel, H. G., 2003, Rotterdam: ERIM. 12 p. (ERIM Report Series on Research in Management ERS-2003-; no. 002-LIS)

Research output: Book/ReportReportProfessional

Derivation of monotone decision models from noisy data

Daniëls, H. A. M. & Velikova, M. V., 2003, International Conference on Computational Management Science. Book of Absatracts. Unknown Publisher, p. 62-62

Research output: Chapter in Book/Report/Conference proceedingChapterScientificpeer-review

310 Downloads (Pure)

Derivation of Monotone Decision Models from Non-Monotone Data

Daniëls, H. A. M. & Velikova, M. V., 2003, Tilburg: Operations research, 16 p. (CentER Discussion Paper; vol. 2003-30).

Research output: Working paperDiscussion paperOther research output

File
Risk analysis
Decision trees
Data mining
Decision making
Economics