Abstract
Likelihood-based procedures are a common way to estimate tail dependence parameters.They are not applicable, however, in non-differentiable models such as those arising from recent max-linear structural equation models. Moreover, they can be hard to compute in higher dimensions. An adaptive weighted least-squares procedure matching nonparametric estimates of the stable tail dependence function with the corresponding values of a parametrically specified proposal yields a novel minimum-distance estimator. The estimator is easy to calculate and applies to a wide range of sampling schemes and tail dependence models. In large samples, it is asymptotically normal with an explicit and estimable covariance matrix. The minimum distance obtained forms the basis of
a goodness-of-t statistic whose asymptotic distribution is chi-square. Extensive Monte Carlo simulations confirm the excellent finite-sample performance of the estimator and demonstrate that it is a strong competitor to currently available methods. The estimator is then applied to disentangle sources of tail dependence in European stock markets.
a goodness-of-t statistic whose asymptotic distribution is chi-square. Extensive Monte Carlo simulations confirm the excellent finite-sample performance of the estimator and demonstrate that it is a strong competitor to currently available methods. The estimator is then applied to disentangle sources of tail dependence in European stock markets.
Original language | English |
---|---|
Place of Publication | TIlburg |
Publisher | CentER, Center for Economic Research |
Number of pages | 24 |
Volume | 2016-002 |
Publication status | Published - 18 Jan 2016 |
Publication series
Name | CentER Discussion Paper |
---|---|
Volume | 2016-002 |
Keywords
- Brown-resnick process
- extremal coefficient
- max-linear model
- multivariate extremes
- stable tail dependence function