A factor mixture model for multivariate survival data: An application to the analysis of lifetime mental disorders

J. Almansa, J.K. Vermunt, C.G. Forero, J. Alonso

Research output: Contribution to journalArticleScientificpeer-review

6 Citations (Scopus)

Abstract

The assessment of the lifetime prevalence of mental disorders under comorbidity conditions is an important area in mental health research. Because information on lifetime disorders is usually gathered retrospectively within cross-sectional studies, the information is necessarily right censored and this should be taken into account when setting up models for the estimation of lifetime prevalences. We propose a factor analytic discrete time survival model combining mixture item response theory and discrete time hazard functions to describe disorder associations while accounting for censoring. This model is used for describing the lifetime prevalence and comorbidity of eight depression and anxiety disorders from the European Study of the Epidemiology of Mental Disorders.
Original languageEnglish
Pages (from-to)85-102
JournalJournal of the Royal Statistical Society Series C-Applied Statistics
Volume63
DOIs
Publication statusPublished - 2014

Fingerprint

Dive into the research topics of 'A factor mixture model for multivariate survival data: An application to the analysis of lifetime mental disorders'. Together they form a unique fingerprint.

Cite this