Abstract
In this note we prove a generalization of the flat extension theorem of Curto and Fialkow [4] for truncated moment matrices. It applies to moment matrices indexed by an arbitrary set of monomials and its border, assuming that this set is connected to 1. When formulated in a basis-free setting, this gives an equivalent result for truncated Hankel operators.
Original language | English |
---|---|
Pages (from-to) | 87-98 |
Journal | Archiv der Mathematik |
Volume | 93 |
Issue number | 1 |
Publication status | Published - 2009 |