A probabilistic computational model of cross-situational word learning

A. Fazly, A. Alishahi, S. Stevenson

Research output: Contribution to journalArticleScientificpeer-review

130 Citations (Scopus)
161 Downloads (Pure)

Abstract

Words are the essence of communication: They are the building blocks of any language. Learning the meaning of words is thus one of the most important aspects of language acquisition: Children must first learn words before they can combine them into complex utterances. Many theories have been developed to explain the impressive efficiency of young children in acquiring the vocabulary of their language, as well as the developmental patterns observed in the course of lexical acquisition. A major source of disagreement among the different theories is whether children are equipped with special mechanisms and biases for word learning, or their general cognitive abilities are adequate for the task. We present a novel computational model of early word learning to shed light on the mechanisms that might be at work in this process. The model learns word meanings as probabilistic associations between words and semantic elements, using an incremental and probabilistic learning mechanism, and drawing only on general cognitive abilities. The results presented here demonstrate that much about word meanings can be learned from naturally occurring child-directed utterances (paired with meaning representations), without using any special biases or constraints, and without any explicit developmental changes in the underlying learning mechanism. Furthermore, our model provides explanations for the occasionally contradictory child experimental data, and offers predictions for the behavior of young word learners in novel situations.
Original languageEnglish
Pages (from-to)1017-1063
Number of pages57
JournalCognitive Science
Volume34
Publication statusPublished - 2010
Externally publishedYes

Keywords

  • Word learning
  • Child language acquisition
  • Computational modeling
  • Cross-situational learning

Fingerprint

Dive into the research topics of 'A probabilistic computational model of cross-situational word learning'. Together they form a unique fingerprint.

Cite this