TY - JOUR
T1 - A systematic review on the potential acceleration of neurocognitive aging in older cancer survivors
AU - Kerstens, Charlotte
AU - Wildiers, Hans P. M. W.
AU - Schroyen, Gwen
AU - Almela, Mercedes
AU - Mark, Ruth E.
AU - Lambrecht, Maarten
AU - Deprez, Sabine
AU - Sleurs, Charlotte
N1 - This research received no external funding
PY - 2023
Y1 - 2023
N2 - As survival rates increase, more emphasis has gone to possible cognitive sequelae in older cancer patients, which could be explained by accelerated brain aging. In this review, we provide a complete overview of studies investigating neuroimaging, neurocognitive, and neurodegenerative disorders in older cancer survivors (>65 years), based on three databases (Pubmed, Web of Science and Medline). Ninety-six studies were included. Evidence was found for functional and structural brain changes (frontal regions, basal ganglia, gray and white matter), compared to healthy controls. Cognitive decline was mainly found in memory functioning. Anti-hormonal treatments were repeatedly associated with cognitive decline (tamoxifen) and sometimes with an increased risk of Alzheimer's disease (androgen deprivation therapy). Chemotherapy was inconsistently associated with later development of cognitive changes or dementia. Radiotherapy was not associated with cognition in patients with non-central nervous system cancer but can play a role in patients with central nervous system cancer, while neurosurgery seemed to improve their cognition in the short-term. Individual risk factors included cancer subtypes (e.g., brain cancer, hormone-related cancers), treatment (e.g., anti-hormonal therapy, chemotherapy, cranial radiation), genetic predisposition (e.g., APOE, COMT, BDNF), age, comorbidities (e.g., frailty, cognitive reserve), and psychological (e.g., depression, (post-traumatic) distress, sleep, fatigue) and social factors (e.g., loneliness, limited caregiver support, low SES). More research on accelerated aging is required to guide intervention studies.
AB - As survival rates increase, more emphasis has gone to possible cognitive sequelae in older cancer patients, which could be explained by accelerated brain aging. In this review, we provide a complete overview of studies investigating neuroimaging, neurocognitive, and neurodegenerative disorders in older cancer survivors (>65 years), based on three databases (Pubmed, Web of Science and Medline). Ninety-six studies were included. Evidence was found for functional and structural brain changes (frontal regions, basal ganglia, gray and white matter), compared to healthy controls. Cognitive decline was mainly found in memory functioning. Anti-hormonal treatments were repeatedly associated with cognitive decline (tamoxifen) and sometimes with an increased risk of Alzheimer's disease (androgen deprivation therapy). Chemotherapy was inconsistently associated with later development of cognitive changes or dementia. Radiotherapy was not associated with cognition in patients with non-central nervous system cancer but can play a role in patients with central nervous system cancer, while neurosurgery seemed to improve their cognition in the short-term. Individual risk factors included cancer subtypes (e.g., brain cancer, hormone-related cancers), treatment (e.g., anti-hormonal therapy, chemotherapy, cranial radiation), genetic predisposition (e.g., APOE, COMT, BDNF), age, comorbidities (e.g., frailty, cognitive reserve), and psychological (e.g., depression, (post-traumatic) distress, sleep, fatigue) and social factors (e.g., loneliness, limited caregiver support, low SES). More research on accelerated aging is required to guide intervention studies.
KW - Aging
KW - Cancer survivors
KW - Cognition
KW - Neurodegeneration
KW - Older
UR - http://www.scopus.com/inward/record.url?scp=85149118995&partnerID=8YFLogxK
U2 - 10.3390/cancers15041215
DO - 10.3390/cancers15041215
M3 - Review article
C2 - 36831557
SN - 2072-6694
VL - 15
JO - Cancers
JF - Cancers
IS - 4
M1 - 1215
ER -