Abstract
We study the minimization of fixed-degree polynomials over the simplex. This problem is well-known to be NP-hard, as it contains the maximum stable set problem in graph theory as a special case. In this paper, we consider a rational approximation by taking the minimum over the regular grid, which consists of rational points with denominator $r$ (for given $r$). We show that the associated convergence rate is $O(1/r^2)$ for quadratic polynomials. For general polynomials, if there exists a rational global minimizer over the simplex, we show that the convergence rate is also of the order $O(1/r^2)$. Our results answer a question posed by De Klerk, Laurent, and Sun [Math. Program., 151 (2015), pp. 433--457]. and improves on previously known $O(1/r)$ bounds in the quadratic case.
Original language | English |
---|---|
Pages (from-to) | 1498-1514 |
Number of pages | 17 |
Journal | SIAM Journal on Optimization |
Volume | 25 |
Issue number | 3 |
DOIs | |
Publication status | Published - 2015 |