TY - UNPB
T1 - Bound-Constrained Polynomial Optimization Using Only Elementary Calculations
AU - de Klerk, Etienne
AU - Lasserre, J.B.
AU - Laurent, Monique
AU - Sun, Zhao
PY - 2015/7/15
Y1 - 2015/7/15
N2 - We provide a monotone non increasing sequence of upper bounds fHk (k≥1) converging to the global minimum of a polynomial f on simple sets like the unit hypercube. The novelty with respect to the converging sequence of upper bounds in [J.B. Lasserre, A new look at nonnegativity on closed sets and polynomial optimization, SIAM J. Optim. 21, pp. 864--885, 2010] is that only elementary computations are required. For optimization over the hypercube, we show that the new bounds fHk have a rate of convergence in O(1/k√). Moreover we show a stronger convergence rate in O(1/k) for quadratic polynomials and more generally for polynomials having a rational minimizer in the hypercube. In comparison, evaluation of all rational grid points with denominator k produces bounds with a rate of convergence in O(1/k2), but at the cost of O(kn) function evaluations, while the new bound fHk needs only O(nk) elementary calculations.
AB - We provide a monotone non increasing sequence of upper bounds fHk (k≥1) converging to the global minimum of a polynomial f on simple sets like the unit hypercube. The novelty with respect to the converging sequence of upper bounds in [J.B. Lasserre, A new look at nonnegativity on closed sets and polynomial optimization, SIAM J. Optim. 21, pp. 864--885, 2010] is that only elementary computations are required. For optimization over the hypercube, we show that the new bounds fHk have a rate of convergence in O(1/k√). Moreover we show a stronger convergence rate in O(1/k) for quadratic polynomials and more generally for polynomials having a rational minimizer in the hypercube. In comparison, evaluation of all rational grid points with denominator k produces bounds with a rate of convergence in O(1/k2), but at the cost of O(kn) function evaluations, while the new bound fHk needs only O(nk) elementary calculations.
KW - polynomial optimization
KW - bound-constrained optimization
KW - Lasserre hierarchy
UR - http://arxiv.org/abs/1507.04404
M3 - Working paper
T3 - arXiv
BT - Bound-Constrained Polynomial Optimization Using Only Elementary Calculations
PB - Cornell University Library
CY - Ithaca
ER -