Computing Optimal Schedules of Battery Usage in Embedded Systems

M.R. Jongerden, Alexandru Mereacre, H.C. Bohnenkamp, Boudewijn R.H.M. Haverkort, Joost P. Katoen

Research output: Contribution to journalArticleScientificpeer-review

31 Citations (Scopus)

Abstract

The use of mobile devices is often limited by the battery lifetime. Some devices have the option to connect an extra battery, or to use smart battery-packs with multiple cells to extend the lifetime. In these cases, scheduling the batteries or battery cells over the load to exploit the recovery properties of the batteries helps to extend the overall systems lifetime. Straightforward scheduling schemes, like round-robin or choosing the best battery available, already provide a big improvement compared to a sequential discharge of the batteries. In this paper, we compare these scheduling schemes with the optimal scheduling scheme produced with two different modeling approaches: an approach based on a priced-timed automaton model (implemented and evaluated in Uppaal Cora), as well as an analytical approach (partly formulated as nonlinear optimization problem) for a slightly adapted scheduling problem. We show that in some cases the results of the simple scheduling schemes (round-robin, and best-first) are close to optimal. However, the optimal schedules, computed according to both methods, also clearly show that in a variety of scenarios, the simple schedules are far from optimal.
Original languageEnglish
Pages (from-to)276-286
Number of pages11
JournalIEEE transactions on industrial informatics
Volume6
Issue number3
DOIs
Publication statusPublished - 2010
Externally publishedYes

Keywords

  • EWI-18215
  • Embedded Systems
  • Scheduling
  • Batteries
  • METIS-277414
  • IR-72598
  • lifetime optimization

Fingerprint

Dive into the research topics of 'Computing Optimal Schedules of Battery Usage in Embedded Systems'. Together they form a unique fingerprint.

Cite this