Customized Sequential Designs for Random Simulation Experiments: Kriging Metamodelling and Bootstrapping

W.C.M. van Beers, J.P.C. Kleijnen

Research output: Working paperDiscussion paperOther research output

381 Downloads (Pure)

Abstract

This paper proposes a novel method to select an experimental design for interpolation in random simulation, especially discrete event simulation.(Though the paper focuses on Kriging, this design approach may also apply to other types of metamodels such as linear regression models.)Assuming that simulation requires much computer time, it is important to select a design with a small number of observations (or simulation runs).The proposed method is therefore sequential.Its novelty is that it accounts for the specific input/output behavior (or response function) of the particular simulation at hand; i.e., the method is customized or application-driven.A tool for this customization is bootstrapping, which enables the estimation of the variances of predictions for inputs not yet simulated.The new method is tested through two classic simulation models: example 1 estimates the expected steady-state waiting time of the M/M/1 queueing model; example 2 estimates the mean costs of a terminating (s, S) inventory simulation.For these simulations the novel design indeed gives better results than Latin Hypercube Sampling (LHS) with a prefixed sample of the same size.
Original languageEnglish
Place of PublicationTilburg
PublisherOperations research
Number of pages35
Volume2005-55
Publication statusPublished - 2005

Publication series

NameCentER Discussion Paper
Volume2005-55

Keywords

  • Simulation

Fingerprint Dive into the research topics of 'Customized Sequential Designs for Random Simulation Experiments: Kriging Metamodelling and Bootstrapping'. Together they form a unique fingerprint.

  • Cite this

    van Beers, W. C. M., & Kleijnen, J. P. C. (2005). Customized Sequential Designs for Random Simulation Experiments: Kriging Metamodelling and Bootstrapping. (CentER Discussion Paper; Vol. 2005-55). Operations research.