Abstract
When considering d possibly dependent random variables, one is often interested in extreme risk regions, with very small probability p. We consider risk regions of the form {z ∈ Rd : f (z) ≤ β}, where f is the joint density and β a small number. Estimation of such an extreme risk region is difficult since it contains hardly any or no data. Using extreme value theory, we construct a natural estimator of an extreme risk region and prove a refined form of consistency, given a random sample of multivariate regularly varying random vectors. In a detailed simulation and comparison study, the good performance of the procedure is demonstrated. We also apply our estimator to financial data.
Original language | English |
---|---|
Pages (from-to) | 1803-1826 |
Journal | Annals of Statistics |
Volume | 39 |
Issue number | 3 |
Publication status | Published - 2011 |