Explainable data mining model for hyperinsulinemia diagnostics

Nevena Ranković, Dragica Rankovic, Mirjana Ivanovic, Igor Lukić

Research output: Contribution to journalArticleScientificpeer-review

21 Downloads (Pure)

Abstract

In our research, we present a data mining model for the early diagnosis of hyperinsulinemia, potentially reducing the risk of diabetes, heart disease, and other chronic conditions. The dataset, gathered from 2019 to 2022 by Serbia's Healthcare Center through an observational cross-sectional study, includes 1008 adolescents. Medical datasets are often highly imbalanced and may contain irrelevant features that hinder predictive performance. To address these challenges in the medical data analysis, we propose a model employing Functional Principal Component Analysis (FPCA), which also accounts for outliers that could otherwise lead to the inclusion of irrelevant features. Unlike standard Principal Component Analysis (PCA), which is sensitive to the initial positions of cluster centers influencing the final outcome, our model integrates FPCA with K-Means clustering to improve the preprocessing stage. Additionally, we have incorporated the post-hoc explanatory method SHAP (SHapley Additive exPlanations) alongside algorithms such as Random Forest, XGBoost, and LightGBM to provide deeper insights into our model, identifying the most contributory features for the development of hyperinsulinemia. Experimental results showed that combining FPCA with K-Means clustering enhances the accuracy of the XGBoost classifier, with this model achieving an accuracy score of 0.99.

Original languageEnglish
Article number2325496
Number of pages25
JournalConnection Science: Journal of Neural Computing, Artificial Intelligence and Cognitive Research
Volume36
Issue number1
DOIs
Publication statusPublished - 4 Mar 2024

Keywords

  • FPCA
  • Hyperinsulinemia
  • K-Means
  • PCA
  • SHAP

Fingerprint

Dive into the research topics of 'Explainable data mining model for hyperinsulinemia diagnostics'. Together they form a unique fingerprint.

Cite this