Abstract
We derive computationally tractable formulations of the robust counterparts of convex quadratic and conic quadratic constraints that are concave in matrix-valued uncertain parameters. We do this for a broad range of uncertainty sets. Our results provide extensions to known results from the literature. We also consider hard quadratic constraints: those that are convex in uncertain matrix-valued parameters. For the robust counterpart of such constraints, we derive inner and outer tractable approximations. As an application, we show how to construct a natural uncertainty set based on a statistical confidence set around a sample mean vector and covariance matrix and use this to provide a tractable reformulation of the robust counterpart of an uncertain portfolio optimization problem. We also apply the results of this paper to norm approximation problems. Summary of Contribution: This paper develops new theoretical results and algorithms that extend the scope of a robust quadratic optimization problem. More specifically, we derive computationally tractable formulations of the robust counterparts of convex quadratic and conic quadratic constraints that are concave in matrix-valued uncertain parameters. We also consider hard quadratic constraints: those that are convex in uncertain matrix-valued parameters. For the robust counterpart of such constraints, we derive inner and outer tractable approximations.
Original language | English |
---|---|
Pages (from-to) | 211-226 |
Journal | INFORMS Journal on Computing |
Volume | 34 |
Issue number | 1 |
DOIs | |
Publication status | Published - Jan 2022 |
Keywords
- robust optimization
- quadratic optimization
- inner approximation
- outer approximation
- mean-variance uncertainty