TY - GEN
T1 - Forged-GAN-BERT
T2 - Authorship Attribution for LLM-Generated Forged Novels
AU - Silva, Kanishka
AU - Frommholz, Ingo
AU - Can, Burcu
AU - Blain, Frédéric
AU - Sarwar, Raheem
AU - Ugolini, Laura
N1 - DBLP License: DBLP's bibliographic metadata records provided through http://dblp.org/ are distributed under a Creative Commons CC0 1.0 Universal Public Domain Dedication. Although the bibliographic metadata records are provided consistent with CC0 1.0 Dedication, the content described by the metadata records is not. Content may be subject to copyright, rights of privacy, rights of publicity and other restrictions.
PY - 2024/3
Y1 - 2024/3
N2 - The advancement of generative Large Language Models (LLMs), capable of producing human-like texts, introduces challenges related to the authenticity of the text documents. This requires exploring potential forgery scenarios within the context of authorship attribution, especially in the literary domain. Particularly,two aspects of doubted authorship may arise in novels, as a novel may be imposed by a renowned author or include a copied writing style of a well-known novel. To address these concerns, we introduce Forged-GAN-BERT, a modified GANBERT-based model to improve the classification of forged novels in two data-augmentation aspects: via the Forged Novels Generator (i.e., ChatGPT) and the generator in GAN. Compared to other transformer-based models, the proposed Forged-GAN-BERT model demonstrates an improved performance with F1 scores of 0.97 and 0.71 for identifying forged novels in single-author and multi-author classification settings. Additionally, we explore different prompt categories for generating the forged novels to analyse the quality of the generated texts using different similarity distance measures, including ROUGE-1, Jaccard Similarity, Overlap Confident, and Cosine Similarity.
AB - The advancement of generative Large Language Models (LLMs), capable of producing human-like texts, introduces challenges related to the authenticity of the text documents. This requires exploring potential forgery scenarios within the context of authorship attribution, especially in the literary domain. Particularly,two aspects of doubted authorship may arise in novels, as a novel may be imposed by a renowned author or include a copied writing style of a well-known novel. To address these concerns, we introduce Forged-GAN-BERT, a modified GANBERT-based model to improve the classification of forged novels in two data-augmentation aspects: via the Forged Novels Generator (i.e., ChatGPT) and the generator in GAN. Compared to other transformer-based models, the proposed Forged-GAN-BERT model demonstrates an improved performance with F1 scores of 0.97 and 0.71 for identifying forged novels in single-author and multi-author classification settings. Additionally, we explore different prompt categories for generating the forged novels to analyse the quality of the generated texts using different similarity distance measures, including ROUGE-1, Jaccard Similarity, Overlap Confident, and Cosine Similarity.
KW - large language models
KW - GAN-BERT
KW - Authorship attribution
M3 - Conference contribution
SP - 325
EP - 337
BT - Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics: Student Research Workshop
A2 - Falk, Neele
A2 - Papi, Sara
A2 - Zhang, Mike
PB - Association for Computational Linguistics
ER -