Frequency-based segregation of syntactic and semantic unification during online sentence level language comprehension

MCM Bastiaansen, P. Hagoort

Research output: Contribution to journalArticleScientificpeer-review

Abstract

During sentence level language comprehension, semantic and syntactic unification are functionally distinct operations. Nevertheless, both recruit roughly the same brain areas (spatially overlapping networks in the left frontotemporal cortex) and happen at the same time (in the first few hundred milliseconds after word onset). We tested the hypothesis that semantic and syntactic unification are segregated by means of neuronal synchronization of the functionally relevant networks in different frequency ranges: gamma (40 Hz and up) for semantic unification and lower beta (10–20 Hz) for syntactic unification. EEG power changes were quantified as participants read either correct sentences, syntactically correct though meaningless sentences (syntactic prose), or sentences that did not contain any syntactic structure (random word lists). Other sentences contained either a semantic anomaly or a syntactic violation at a critical word in the sentence. Larger EEG gamma-band power was observed for semantically coherent than for semantically anomalous sentences. Similarly, betaband power was larger for syntactically correct sentences than for incorrect ones. These results confirm the existence of a functional dissociation in EEG oscillatory dynamics during sentence level language comprehension that is compatible with the notion of a frequency-based segregation of syntactic and semantic unification.
Original languageEnglish
Pages (from-to)2095-2107
JournalJournal of Cognitive Neuroscience
Volume27
Issue number11
DOIs
Publication statusPublished - 2015

Fingerprint

Dive into the research topics of 'Frequency-based segregation of syntactic and semantic unification during online sentence level language comprehension'. Together they form a unique fingerprint.

Cite this