@techreport{eeccf622dd1841d4a2f9bd7cd07ffbc8,
title = "General Trimmed Estimation: Robust Approach to Nonlinear and Limited Dependent Variable Models (Replaces DP 2007-1)",
abstract = "High breakdown-point regression estimators protect against large errors and data con- tamination. We generalize the concept of trimming used by many of these robust estima- tors, such as the least trimmed squares and maximum trimmed likelihood, and propose a general trimmed estimator, which renders robust estimators applicable far beyond the standard (non)linear regression models. We derive here the consistency and asymptotic distribution of the proposed general trimmed estimator under mild B-mixing conditions and demonstrate its applicability in nonlinear regression and limited dependent variable models.",
keywords = "asymptotic normality, regression, robust estimation, trimming",
author = "P. Cizek",
note = "Subsequently published in Econometrics Theory, 2008 Pagination: 41",
year = "2007",
language = "English",
volume = "2007-65",
series = "CentER Discussion Paper",
publisher = "Operations research",
type = "WorkingPaper",
institution = "Operations research",
}