Abstract
A surprising 'converse to the polynomial method' of Aaronson et al. (CCC'16) shows that any bounded quadratic polynomial can be computed exactly in expectation by a 1-query algorithm up to a universal multiplicative factor related to the famous Grothendieck constant. Here we show that such a result does not generalize to quartic polynomials and 2-query algorithms, even when we allow for additive approximations. We also show that the additive approximation implied by their result is tight for bounded bilinear forms, which gives a new characterization of the Grothendieck constant in terms of 1-query quantum algorithms. Along the way we provide reformulations of the completely bounded norm of a form, and its dual norm.
Original language | English |
---|---|
Article number | 1526 |
Number of pages | 30 |
Journal | Quantum |
Volume | 8 |
DOIs | |
Publication status | Published - 18 Nov 2024 |
Keywords
- Quantum
- Algorithms