Handelman's hierarchy for the maximum stable set problem

M. Laurent, Z. Sun

Research output: Contribution to journalArticleScientificpeer-review

Abstract

The maximum stable set problem is a well-known NP-hard problem in combinatorial optimization, which can be formulated as the maximization of a quadratic square-free polynomial over the (Boolean) hypercube. We investigate a hierarchy of linear programming relaxations for this problem, based on a result of Handelman showing that a positive polynomial over a polytope with non-empty interior can be represented as conic combination of products of the linear constraints defining the polytope. We relate the rank of Handelman’s hierarchy with structural properties of graphs. In particular we show a relation to fractional clique covers which we use to upper bound the Handelman rank for perfect graphs and determine its exact value in the vertex-transitive case. Moreover we show two upper bounds on the Handelman rank in terms of the (fractional) stability number of the graph and compute the Handelman rank for several classes of graphs including odd cycles and wheels and their complements. We also point out links to several other linear and semidefinite programming hierarchies.
Original languageEnglish
Pages (from-to)393-423
JournalJournal of Global Optimization
Volume60
Issue number3
Early online date30 Nov 2013
DOIs
Publication statusPublished - 2014

    Fingerprint

Cite this