Abstract
Head movements are crucial for social human-human interaction. They can transmit important cues (e.g., joint attention, speaker detection) that cannot be achieved with verbal interaction alone. This advantage also holds for human-robot interaction. Even though modeling human motions through generative AI models has become an active research area within robotics in recent years, the use of these methods for producing head movements in human-robot interaction remains underexplored. In this work, we employed a generative AI pipeline to produce human-like head movements for a Nao humanoid robot. In addition, we tested the system on a real-time active-speaker tracking task in a group conversation setting. Overall, the results show that the Nao robot successfully imitates human head movements in a natural manner while actively tracking the speakers during the conversation. Code and data from this study are available at https://github.com/dingdingding60/Humanoids2024HRI
Original language | English |
---|---|
Pages | 645-652 |
Number of pages | 8 |
DOIs | |
Publication status | Published - 16 Jul 2024 |
Event | IEEE-RAS 23rd International Conference on Humanoid Robots - France, Nancy, France Duration: 22 Nov 2024 → 24 Nov 2024 Conference number: 23 |
Conference
Conference | IEEE-RAS 23rd International Conference on Humanoid Robots |
---|---|
Abbreviated title | Humanoids 2024 |
Country/Territory | France |
City | Nancy |
Period | 22/11/24 → 24/11/24 |
Keywords
- cs.RO
- cs.AI
- cs.HC
- cs.LG