Learning visual representations of style

Nanne van Noord

Research output: ThesisDoctoral ThesisScientific

42 Downloads (Pure)

Abstract

Learning Visual Representations of Style
Door Nanne van Noord

De stijl van een kunstenaar is zichtbaar in zijn/haar werk, onafhankelijk van de vorm of het onderwerp van een kunstwerk kunnen kunstexperts deze stijl herkennen. Of het nu om een landschap of een portret gaat, het connaisseurschap van kunstexperts stelt hen in staat om de stijl van de kunstenaar te herkennen. Het vertalen van dit vermogen tot connaisseurschap naar een computer, zodat de computer in staat is om de stijl van een kunstenaar te herkennen, en om kunstwerken te (re)produceren in de stijl van de kunstenaar, staat centraal in dit onderzoek.

Voor visuele analyseren van kunstwerken maken computers gebruik van beeldverwerkingstechnieken. Traditioneel gesproken bestaan deze technieken uit door computerwetenschappers ontwikkelde algoritmes die vooraf gedefinieerde visuele kernmerken kunnen herkennen. Omdat deze kenmerken zijn ontwikkelt voor de analyse van de inhoud van foto’s zijn ze beperkt toepasbaar voor de analyse van de stijl van visuele kunst. Daarnaast is er ook geen definitief antwoord welke visuele kenmerken indicatief zijn voor stijl. Om deze beperkingen te overkomen maken we in dit onderzoek gebruik van Deep Learning, een methodologie die het beeldverwerking onderzoeksveld in de laatste jaren enorm heeft gerevolutionaliseerd.

De kracht van Deep Learning komt voort uit het zelflerende vermogen, in plaats van dat we afhankelijk zijn van vooraf gedefinieerde kenmerken, kan de computer zelf leren wat de juiste kenmerken zijn. In dit onderzoek hebben we algoritmes ontwikkelt met het doel om het voor de computer mogelijk te maken om 1) zelf te leren om de stijl van een kunstenaar te herkennen, en 2) nieuwe afbeeldingen te genereren in de stijl van een kunstenaar. Op basis van het in het proefschrift gepresenteerde werk kunnen we concluderen dat de computer inderdaad in staat is om te leren om de stijl van een kunstenaar te herkennen, ook in een uitdagende setting met duizenden kunstwerken en enkele honderden kunstenaars.

Daarnaast kunnen we concluderen dat het mogelijk is om, op basis van bestaande kunstwerken, nieuwe kunstwerken te generen in de stijl van de kunstenaar. Namelijk, een kleurloze afbeeldingen van een kunstwerk kan ingekleurd worden in de stijl van de kunstenaar, en wanneer er delen missen uit een kunstwerk is het mogelijk om deze missende stukken in te vullen (te retoucheren). Alhoewel we nog niet in staat zijn om volledig nieuwe kunstwerken te generen, is dit onderzoek een grote stap in die richting. Bovendien zijn de in dit onderzoek ontwikkelde technieken en methodes veelbelovend als digitale middelen ter ondersteuning van kunstexperts en restauratoren.
Original languageEnglish
QualificationDoctor of Philosophy
Awarding Institution
  • Tilburg University
Supervisors/Advisors
  • Postma, Eric, Promotor
  • Louwerse, Max, Promotor
  • Abry, P., Member PhD commission, External person
  • Chan, R.H., Member PhD commission, External person
  • Dooms, A., Member PhD commission, External person
  • van den Herik, H. Jaap, Member PhD commission, External person
  • Worring, M., Member PhD commission, External person
Thesis sponsors
Award date16 May 2018
Place of PublicationS.l.
Publisher
Publication statusPublished - 2018

Fingerprint

Visual Representation
De Stijl

Cite this

van Noord, N. (2018). Learning visual representations of style. S.l.: [s.n.].
van Noord, Nanne. / Learning visual representations of style. S.l. : [s.n.], 2018. 200 p.
@phdthesis{19844a3ce0ae4ee597a6523f6b5282d0,
title = "Learning visual representations of style",
abstract = "Learning Visual Representations of StyleDoor Nanne van NoordDe stijl van een kunstenaar is zichtbaar in zijn/haar werk, onafhankelijk van de vorm of het onderwerp van een kunstwerk kunnen kunstexperts deze stijl herkennen. Of het nu om een landschap of een portret gaat, het connaisseurschap van kunstexperts stelt hen in staat om de stijl van de kunstenaar te herkennen. Het vertalen van dit vermogen tot connaisseurschap naar een computer, zodat de computer in staat is om de stijl van een kunstenaar te herkennen, en om kunstwerken te (re)produceren in de stijl van de kunstenaar, staat centraal in dit onderzoek. Voor visuele analyseren van kunstwerken maken computers gebruik van beeldverwerkingstechnieken. Traditioneel gesproken bestaan deze technieken uit door computerwetenschappers ontwikkelde algoritmes die vooraf gedefinieerde visuele kernmerken kunnen herkennen. Omdat deze kenmerken zijn ontwikkelt voor de analyse van de inhoud van foto’s zijn ze beperkt toepasbaar voor de analyse van de stijl van visuele kunst. Daarnaast is er ook geen definitief antwoord welke visuele kenmerken indicatief zijn voor stijl. Om deze beperkingen te overkomen maken we in dit onderzoek gebruik van Deep Learning, een methodologie die het beeldverwerking onderzoeksveld in de laatste jaren enorm heeft gerevolutionaliseerd. De kracht van Deep Learning komt voort uit het zelflerende vermogen, in plaats van dat we afhankelijk zijn van vooraf gedefinieerde kenmerken, kan de computer zelf leren wat de juiste kenmerken zijn. In dit onderzoek hebben we algoritmes ontwikkelt met het doel om het voor de computer mogelijk te maken om 1) zelf te leren om de stijl van een kunstenaar te herkennen, en 2) nieuwe afbeeldingen te genereren in de stijl van een kunstenaar. Op basis van het in het proefschrift gepresenteerde werk kunnen we concluderen dat de computer inderdaad in staat is om te leren om de stijl van een kunstenaar te herkennen, ook in een uitdagende setting met duizenden kunstwerken en enkele honderden kunstenaars.Daarnaast kunnen we concluderen dat het mogelijk is om, op basis van bestaande kunstwerken, nieuwe kunstwerken te generen in de stijl van de kunstenaar. Namelijk, een kleurloze afbeeldingen van een kunstwerk kan ingekleurd worden in de stijl van de kunstenaar, en wanneer er delen missen uit een kunstwerk is het mogelijk om deze missende stukken in te vullen (te retoucheren). Alhoewel we nog niet in staat zijn om volledig nieuwe kunstwerken te generen, is dit onderzoek een grote stap in die richting. Bovendien zijn de in dit onderzoek ontwikkelde technieken en methodes veelbelovend als digitale middelen ter ondersteuning van kunstexperts en restauratoren.",
author = "{van Noord}, Nanne",
note = "Series: TiCC Ph.D. Series Volume: 60",
year = "2018",
language = "English",
series = "TiCC Ph.D. Series",
publisher = "[s.n.]",
school = "Tilburg University",

}

van Noord, N 2018, 'Learning visual representations of style', Doctor of Philosophy, Tilburg University, S.l..

Learning visual representations of style. / van Noord, Nanne.

S.l. : [s.n.], 2018. 200 p.

Research output: ThesisDoctoral ThesisScientific

TY - THES

T1 - Learning visual representations of style

AU - van Noord, Nanne

N1 - Series: TiCC Ph.D. Series Volume: 60

PY - 2018

Y1 - 2018

N2 - Learning Visual Representations of StyleDoor Nanne van NoordDe stijl van een kunstenaar is zichtbaar in zijn/haar werk, onafhankelijk van de vorm of het onderwerp van een kunstwerk kunnen kunstexperts deze stijl herkennen. Of het nu om een landschap of een portret gaat, het connaisseurschap van kunstexperts stelt hen in staat om de stijl van de kunstenaar te herkennen. Het vertalen van dit vermogen tot connaisseurschap naar een computer, zodat de computer in staat is om de stijl van een kunstenaar te herkennen, en om kunstwerken te (re)produceren in de stijl van de kunstenaar, staat centraal in dit onderzoek. Voor visuele analyseren van kunstwerken maken computers gebruik van beeldverwerkingstechnieken. Traditioneel gesproken bestaan deze technieken uit door computerwetenschappers ontwikkelde algoritmes die vooraf gedefinieerde visuele kernmerken kunnen herkennen. Omdat deze kenmerken zijn ontwikkelt voor de analyse van de inhoud van foto’s zijn ze beperkt toepasbaar voor de analyse van de stijl van visuele kunst. Daarnaast is er ook geen definitief antwoord welke visuele kenmerken indicatief zijn voor stijl. Om deze beperkingen te overkomen maken we in dit onderzoek gebruik van Deep Learning, een methodologie die het beeldverwerking onderzoeksveld in de laatste jaren enorm heeft gerevolutionaliseerd. De kracht van Deep Learning komt voort uit het zelflerende vermogen, in plaats van dat we afhankelijk zijn van vooraf gedefinieerde kenmerken, kan de computer zelf leren wat de juiste kenmerken zijn. In dit onderzoek hebben we algoritmes ontwikkelt met het doel om het voor de computer mogelijk te maken om 1) zelf te leren om de stijl van een kunstenaar te herkennen, en 2) nieuwe afbeeldingen te genereren in de stijl van een kunstenaar. Op basis van het in het proefschrift gepresenteerde werk kunnen we concluderen dat de computer inderdaad in staat is om te leren om de stijl van een kunstenaar te herkennen, ook in een uitdagende setting met duizenden kunstwerken en enkele honderden kunstenaars.Daarnaast kunnen we concluderen dat het mogelijk is om, op basis van bestaande kunstwerken, nieuwe kunstwerken te generen in de stijl van de kunstenaar. Namelijk, een kleurloze afbeeldingen van een kunstwerk kan ingekleurd worden in de stijl van de kunstenaar, en wanneer er delen missen uit een kunstwerk is het mogelijk om deze missende stukken in te vullen (te retoucheren). Alhoewel we nog niet in staat zijn om volledig nieuwe kunstwerken te generen, is dit onderzoek een grote stap in die richting. Bovendien zijn de in dit onderzoek ontwikkelde technieken en methodes veelbelovend als digitale middelen ter ondersteuning van kunstexperts en restauratoren.

AB - Learning Visual Representations of StyleDoor Nanne van NoordDe stijl van een kunstenaar is zichtbaar in zijn/haar werk, onafhankelijk van de vorm of het onderwerp van een kunstwerk kunnen kunstexperts deze stijl herkennen. Of het nu om een landschap of een portret gaat, het connaisseurschap van kunstexperts stelt hen in staat om de stijl van de kunstenaar te herkennen. Het vertalen van dit vermogen tot connaisseurschap naar een computer, zodat de computer in staat is om de stijl van een kunstenaar te herkennen, en om kunstwerken te (re)produceren in de stijl van de kunstenaar, staat centraal in dit onderzoek. Voor visuele analyseren van kunstwerken maken computers gebruik van beeldverwerkingstechnieken. Traditioneel gesproken bestaan deze technieken uit door computerwetenschappers ontwikkelde algoritmes die vooraf gedefinieerde visuele kernmerken kunnen herkennen. Omdat deze kenmerken zijn ontwikkelt voor de analyse van de inhoud van foto’s zijn ze beperkt toepasbaar voor de analyse van de stijl van visuele kunst. Daarnaast is er ook geen definitief antwoord welke visuele kenmerken indicatief zijn voor stijl. Om deze beperkingen te overkomen maken we in dit onderzoek gebruik van Deep Learning, een methodologie die het beeldverwerking onderzoeksveld in de laatste jaren enorm heeft gerevolutionaliseerd. De kracht van Deep Learning komt voort uit het zelflerende vermogen, in plaats van dat we afhankelijk zijn van vooraf gedefinieerde kenmerken, kan de computer zelf leren wat de juiste kenmerken zijn. In dit onderzoek hebben we algoritmes ontwikkelt met het doel om het voor de computer mogelijk te maken om 1) zelf te leren om de stijl van een kunstenaar te herkennen, en 2) nieuwe afbeeldingen te genereren in de stijl van een kunstenaar. Op basis van het in het proefschrift gepresenteerde werk kunnen we concluderen dat de computer inderdaad in staat is om te leren om de stijl van een kunstenaar te herkennen, ook in een uitdagende setting met duizenden kunstwerken en enkele honderden kunstenaars.Daarnaast kunnen we concluderen dat het mogelijk is om, op basis van bestaande kunstwerken, nieuwe kunstwerken te generen in de stijl van de kunstenaar. Namelijk, een kleurloze afbeeldingen van een kunstwerk kan ingekleurd worden in de stijl van de kunstenaar, en wanneer er delen missen uit een kunstwerk is het mogelijk om deze missende stukken in te vullen (te retoucheren). Alhoewel we nog niet in staat zijn om volledig nieuwe kunstwerken te generen, is dit onderzoek een grote stap in die richting. Bovendien zijn de in dit onderzoek ontwikkelde technieken en methodes veelbelovend als digitale middelen ter ondersteuning van kunstexperts en restauratoren.

M3 - Doctoral Thesis

T3 - TiCC Ph.D. Series

PB - [s.n.]

CY - S.l.

ER -

van Noord N. Learning visual representations of style. S.l.: [s.n.], 2018. 200 p. (TiCC Ph.D. Series).