Machine learning used to compare the diagnostic accuracy of risk factors, clinical signs and biomarkers and to develop a new prediction model for neonatal early-onset sepsis

Martin Stocker*, Imant Daunhawer, Wendy Van Herk, Salhab El Helou, Sourabh Dutta, Frank A. B. A. Schuerman, Rita K. Van Den Tooren-de Groot, Jantien W. Wieringa, Jan Janota, Laura H. Van Der Meer-Kappelle, Rob Moonen, Sintha D. Sie, Esther De Vries, Albertine E. Donker, Urs Zimmerman, Luregn J. Schlapbach, Amerik C. De Mol, Angelique Hoffmann-Haringsma, Madan Roy, Maren TomaskeRené F. Kornelisse, Juliette Van Gijsel, Frans B. Plötz, Sven Wellmann, Niek B. Achten, Dirk Lehnick, Annemarie M. C. Van Rossum, Julia E. Vogt

*Corresponding author for this work

Research output: Contribution to journalArticleScientificpeer-review

15 Citations (Scopus)
283 Downloads (Pure)

Fingerprint

Dive into the research topics of 'Machine learning used to compare the diagnostic accuracy of risk factors, clinical signs and biomarkers and to develop a new prediction model for neonatal early-onset sepsis'. Together they form a unique fingerprint.

Keyphrases

Computer Science

Nursing and Health Professions

Mathematics

Veterinary Science and Veterinary Medicine