Micro-macro multilevel latent class models with multiple discrete individual-level variables

M. Bennink, M.A. Croon, B. Kroon, J.K. Vermunt

Research output: Contribution to journalArticleScientificpeer-review

92 Downloads (Pure)


An existing micro-macro method for a single individual-level variable is extended to the multivariate situation by presenting two multilevel latent class models in which multiple discrete individual-level variables are used to explain a group-level outcome. As in the univariate case, the individual-level data are summarized at the group-level by constructing a discrete latent variable at the group level and this group-level latent variable is used as a predictor for the group-level outcome. In the first extension, that is referred to as the Direct model, the multiple individual-level variables are directly used as indicators for the group-level latent variable. In the second extension, referred to as the Indirect model, the multiple individual-level variables are used to construct an individual-level latent variable that is used as an indicator for the group-level latent variable. This implies that the individual-level variables are used indirectly at the group-level. The within- and between components of the (co)varn the individual-level variables are independent in the Direct model, but dependent in the Indirect model. Both models are discussed and illustrated with an empirical data example.
Original languageEnglish
Pages (from-to)139-154
JournalAdvances in Data Analysis and Classification
Issue number2
Publication statusPublished - 2016


Cite this