TY - UNPB
T1 - Mixed Tree and Spatial Representation of Dissimilarity Judgments
AU - Wedel, M.
AU - Bijmolt, T.H.A.
N1 - Pagination: 38
PY - 1998
Y1 - 1998
N2 - Whereas previous research has shown that either tree or spatial representations of dissimilarity judgments may be appropriate, focussing on the comparative fit at the aggregate level, we investigate whether there is heterogeneity among subjects in the extent to which their dissimilarity judgments are better represented by ultrametric tree or spatial multidimensional scaling models. We develop a mixture model for the analysis of dissimilarity data, that is formulated in a stochastic context, and entails a representation and a measurement model component. The latter involves distributional assumptions on the measurement error, and enables estimation by maximum likelihood. The representation component allows dissimilarity judgments to be represented either by a tree structure or by a spatial configuration, or a mixture of both. In order to investigate the appropriateness of tree versus spatial representations, the model is applied to twenty empirical data sets. We compare the fit of our model with that of aggregate tree and spatial models, as well as with mixtures of pure trees and mixtures of pure spaces, respectively. We formulate some empirical generalizations on the relative importance of tree versus spatial structures in representing dissimilarity judgments at the individual level.
AB - Whereas previous research has shown that either tree or spatial representations of dissimilarity judgments may be appropriate, focussing on the comparative fit at the aggregate level, we investigate whether there is heterogeneity among subjects in the extent to which their dissimilarity judgments are better represented by ultrametric tree or spatial multidimensional scaling models. We develop a mixture model for the analysis of dissimilarity data, that is formulated in a stochastic context, and entails a representation and a measurement model component. The latter involves distributional assumptions on the measurement error, and enables estimation by maximum likelihood. The representation component allows dissimilarity judgments to be represented either by a tree structure or by a spatial configuration, or a mixture of both. In order to investigate the appropriateness of tree versus spatial representations, the model is applied to twenty empirical data sets. We compare the fit of our model with that of aggregate tree and spatial models, as well as with mixtures of pure trees and mixtures of pure spaces, respectively. We formulate some empirical generalizations on the relative importance of tree versus spatial structures in representing dissimilarity judgments at the individual level.
KW - Multidimensional scaling
KW - tree models
KW - mixture models
KW - dissimilarity judgments
M3 - Discussion paper
VL - 1998-109
T3 - CentER Discussion Paper
BT - Mixed Tree and Spatial Representation of Dissimilarity Judgments
PB - Marketing
CY - Tilburg
ER -