MLQE-PE: A Multilingual Quality Estimation and Post-Editing Dataset

Marina Fomicheva, Shuo Sun, Erick Fonseca, Chrysoula Zerva, Frédéric Blain, Vishrav Chaudhary, Francisco Guzmán, Nina Lopatina, André F.T. Martins, Lucia Specia

Research output: Chapter in Book/Report/Conference proceedingConference contributionScientificpeer-review

19 Citations (Scopus)

Abstract

We present MLQE-PE, a new dataset for Machine Translation (MT) Quality Estimation (QE) and Automatic Post-Editing (APE). The dataset contains annotations for eleven language pairs, including both high- and low-resource languages. Specifically, it is annotated for translation quality with human labels for up to 10,000 translations per language pair in the following formats: sentence-level direct assessments and post-editing effort, and word-level binary good/bad labels. Apart from the quality-related scores, each source-translation sentence pair is accompanied by the corresponding post-edited sentence, as well as titles of the articles where the sentences were extracted from, and information on the neural MT models used to translate the text. We provide a thorough description of the data collection and annotation process as well as an analysis of the annotation distribution for each language pair. We also report the performance of baseline systems trained on the MLQE-PE dataset. The dataset is freely available and has already been used for several WMT shared tasks.

Original languageEnglish
Title of host publication2022 Language Resources and Evaluation Conference, LREC 2022
EditorsNicoletta Calzolari, Frederic Bechet, Philippe Blache, Khalid Choukri, Christopher Cieri, Thierry Declerck, Sara Goggi, Hitoshi Isahara, Bente Maegaard, Joseph Mariani, Helene Mazo, Jan Odijk, Stelios Piperidis
PublisherEuropean Language Resources Association (ELRA)
Pages4963-4974
Number of pages12
ISBN (Electronic)9791095546726
Publication statusPublished - 2022
Event13th International Conference on Language Resources and Evaluation Conference, LREC 2022 - Marseille, France
Duration: 20 Jun 202225 Jun 2022

Publication series

Name2022 Language Resources and Evaluation Conference, LREC 2022

Conference

Conference13th International Conference on Language Resources and Evaluation Conference, LREC 2022
Country/TerritoryFrance
CityMarseille
Period20/06/2225/06/22

Keywords

  • direct assessments
  • evaluation
  • Machine Translation
  • post-edits
  • quality estimation

Fingerprint

Dive into the research topics of 'MLQE-PE: A Multilingual Quality Estimation and Post-Editing Dataset'. Together they form a unique fingerprint.

Cite this