TY - JOUR
T1 - Motor unit firing rate during static contraction indicated by the surface EMG power spectrum
AU - Van Boxtel, Anton
AU - Schomaker, Lambert R.B.
PY - 1983
Y1 - 1983
N2 - In this study, power spectral density functions (PSDF's) were computed of interference EMG of various facial and jaw-elevator muscles during nonfatiguing submaximal static contractions, recorded with surface electrodes. A distinct peak was found in the PSDF's in the frequency region below 40 Hz. It was shown that the peak was due to genuine EMG activity and that it could not be considered as an artifact, which was caused by electrode displacements during contraction. An increase of contraction strength resulted in a shift of the peak to higher frequencies and a decrease of peak amplitude relative to the power spectral estimates above 40 Hz, which were shown to be determined by the shape of the motor unit (MU) action potentials. In accordance with mathematical models of the EMG PSDF, it was demonstrated that the peak indicates the dominant firing rate of the sampled MU's. Our results suggest that this can be defined as the firing rate of the first recruited low-threshold MU's, which may be expected to dominate the interference EMG signal because of their preponderance in number. The data further suggest that the peak can be more readily observed in PSDF's of facial and jaw-elevator muscles than in PSDF's of limb muscles. This might be related to differences in MU firing statistics.
AB - In this study, power spectral density functions (PSDF's) were computed of interference EMG of various facial and jaw-elevator muscles during nonfatiguing submaximal static contractions, recorded with surface electrodes. A distinct peak was found in the PSDF's in the frequency region below 40 Hz. It was shown that the peak was due to genuine EMG activity and that it could not be considered as an artifact, which was caused by electrode displacements during contraction. An increase of contraction strength resulted in a shift of the peak to higher frequencies and a decrease of peak amplitude relative to the power spectral estimates above 40 Hz, which were shown to be determined by the shape of the motor unit (MU) action potentials. In accordance with mathematical models of the EMG PSDF, it was demonstrated that the peak indicates the dominant firing rate of the sampled MU's. Our results suggest that this can be defined as the firing rate of the first recruited low-threshold MU's, which may be expected to dominate the interference EMG signal because of their preponderance in number. The data further suggest that the peak can be more readily observed in PSDF's of facial and jaw-elevator muscles than in PSDF's of limb muscles. This might be related to differences in MU firing statistics.
UR - http://www.scopus.com/inward/record.url?scp=0020970554&partnerID=8YFLogxK
U2 - 10.1109/TBME.1983.325057
DO - 10.1109/TBME.1983.325057
M3 - Article
C2 - 6642529
AN - SCOPUS:0020970554
SN - 0018-9294
VL - BME-30
SP - 601
EP - 609
JO - IEEE Transactions on Biomedical Engineering
JF - IEEE Transactions on Biomedical Engineering
IS - 9
ER -