Abstract
A mixed extension of a graph G is a graph H obtained from G by replacing each vertex of G by a clique or a coclique, whilst two vertices in H corresponding to distinct vertices x and y of G are adjacent whenever x and y are adjacent in G. If G is the path P-3, then H has at most three adjacency eigenvalues unequal to 0 and -1. Recently, the first author classified the graphs with the mentioned eigenvalue property. Using this classification we investigate mixed extension of P-3 on being determined by the adjacency spectrum. We present several cospectral families, and with the help of a computer we find all graphs on at most 25 vertices that are cospectral with a mixed extension of P-3.
Original language | English |
---|---|
Article number | P3.16 |
Number of pages | 10 |
Journal | The Electronic Journal of Combinatorics: EJC |
Volume | 26 |
Issue number | 3 |
Publication status | Published - 19 Jul 2019 |