Abstract
To interpret a person’s change score, one typically transforms the change score into, for example, a percentile, so that one knows a person’s location in a distribution of change scores. Transformed scores are referred to as norms and the construction of norms is referred to as norming. Two often-used norming methods for change scores are the regression-based change approach and the T Scores for Change method. In this article, we discuss the similarities and differences between these norming methods, and use a simulation study to systematically examine the precision of the two methods and to establish the minimum sample size requirements for satisfactory precision.
Original language | English |
---|---|
Pages (from-to) | 503-517 |
Journal | Assessment |
Volume | 28 |
Issue number | 2 |
DOIs | |
Publication status | Published - 2021 |