TY - JOUR
T1 - Reducing nonnegativity over general semialgebraic sets to nonnegativity over simple sets
AU - Kuryatnikova, Olga
AU - Vera, Juan C.
AU - Zuluaga, Luis F.
N1 - Publisher Copyright:
© 2024 Society for Industrial and Applied Mathematics Publications. All rights reserved.
PY - 2024/4
Y1 - 2024/4
N2 - A nonnegativity certificate (NNC) is a way to write a polynomial so that its nonnegativity on a semialgebraic set becomes evident. Positivstellensätze (Psätze) guarantee the existence of NNCs. Both NNCs and Psätze underlie powerful algorithmic techniques for optimization. This paper proposes a universal approach to derive new Psätze for general semialgebraic sets from ones developed for simpler sets, such as a box, a simplex, or the nonnegative orthant. We provide several results illustrating the approach. First, by considering Handelman’s Positivstellensatz (Psatz) over a box, we construct non-SOS Schmüdgen-type Psätze over any compact semialgebraic set, that is, a family of Psätze that follow the structure of the fundamental Schmüdgen’s Psatz but where instead of SOS polynomials, any class of polynomials containing the nonnegative constants can be used, such as SONC, DSOS/SDSOS, hyperbolic, or sums of AM/GM polynomials. Second, by considering the simplex as the simple set, we derive a sparse Psatz over general compact sets which does not rely on any structural assumptions of the set. Finally, by considering Pólya’s Psatz over the nonnegative orthant, we derive a new non-SOS Psatz over unbounded sets which satisfy some generic conditions. All these results contribute to the literature regarding the use of non-SOS polynomials and sparse NNCs to derive Psätze over compact and unbounded sets. Throughout the article, we illustrate our results with relevant examples and numerical experiments.
AB - A nonnegativity certificate (NNC) is a way to write a polynomial so that its nonnegativity on a semialgebraic set becomes evident. Positivstellensätze (Psätze) guarantee the existence of NNCs. Both NNCs and Psätze underlie powerful algorithmic techniques for optimization. This paper proposes a universal approach to derive new Psätze for general semialgebraic sets from ones developed for simpler sets, such as a box, a simplex, or the nonnegative orthant. We provide several results illustrating the approach. First, by considering Handelman’s Positivstellensatz (Psatz) over a box, we construct non-SOS Schmüdgen-type Psätze over any compact semialgebraic set, that is, a family of Psätze that follow the structure of the fundamental Schmüdgen’s Psatz but where instead of SOS polynomials, any class of polynomials containing the nonnegative constants can be used, such as SONC, DSOS/SDSOS, hyperbolic, or sums of AM/GM polynomials. Second, by considering the simplex as the simple set, we derive a sparse Psatz over general compact sets which does not rely on any structural assumptions of the set. Finally, by considering Pólya’s Psatz over the nonnegative orthant, we derive a new non-SOS Psatz over unbounded sets which satisfy some generic conditions. All these results contribute to the literature regarding the use of non-SOS polynomials and sparse NNCs to derive Psätze over compact and unbounded sets. Throughout the article, we illustrate our results with relevant examples and numerical experiments.
KW - certificates of nonnegativity
KW - non-SOS polynomials
KW - polynomial optimization
KW - Positivstellensatz
KW - SDSOS polynomials
KW - SONC polynomials
KW - sparsity
UR - http://www.scopus.com/inward/record.url?scp=85196382314&partnerID=8YFLogxK
U2 - 10.1137/22M1501027
DO - 10.1137/22M1501027
M3 - Article
AN - SCOPUS:85196382314
SN - 1052-6234
VL - 34
SP - 1970
EP - 2006
JO - SIAM Journal on Optimization
JF - SIAM Journal on Optimization
IS - 2
ER -