TY - JOUR
T1 - Sample size requirements for traditional and regression-based norms
AU - Oosterhuis, H.E.M.
AU - van der Ark, L.A.
AU - Sijtsma, K.
PY - 2016
Y1 - 2016
N2 - Test norms enable determining the position of an individual test taker in the group. The most frequently used approach to obtain test norms is traditional norming. Regression-based norming may be more efficient than traditional norming and is rapidly growing in popularity, but little is known about its technical properties. A simulation study was conducted to compare the sample size requirements for traditional and regression-based norming by examining the 95% interpercentile ranges for percentile estimates as a function of sample size, norming method, size of covariate effects on the test score, test length, and number of answer categories in an item. Provided the assumptions of the linear regression model hold in the data, for a subdivision of the total group into eight equal-size subgroups, we found that regression-based norming requires samples 2.5 to 5.5 times smaller than traditional norming. Sample size requirements are presented for each norming method, test length, and number of answer categories. We emphasize that additional research is needed to establish sample size requirements when the assumptions of the linear regression model are violated.
AB - Test norms enable determining the position of an individual test taker in the group. The most frequently used approach to obtain test norms is traditional norming. Regression-based norming may be more efficient than traditional norming and is rapidly growing in popularity, but little is known about its technical properties. A simulation study was conducted to compare the sample size requirements for traditional and regression-based norming by examining the 95% interpercentile ranges for percentile estimates as a function of sample size, norming method, size of covariate effects on the test score, test length, and number of answer categories in an item. Provided the assumptions of the linear regression model hold in the data, for a subdivision of the total group into eight equal-size subgroups, we found that regression-based norming requires samples 2.5 to 5.5 times smaller than traditional norming. Sample size requirements are presented for each norming method, test length, and number of answer categories. We emphasize that additional research is needed to establish sample size requirements when the assumptions of the linear regression model are violated.
U2 - 10.1177/1073191115580638
DO - 10.1177/1073191115580638
M3 - Article
SN - 1073-1911
VL - 23
SP - 191
EP - 202
JO - Assessment
JF - Assessment
IS - 2
ER -