TY - JOUR
T1 - Separating the wheat from the chaff
T2 - Bayesian regularization in dynamic social networks
AU - Karimova, Diana
AU - Leenders, Roger
AU - Meijerink-Bosman, Marlyne
AU - Mulder, Joris
N1 - This work was supported by an ERC Starting Grant (758791).
PY - 2023
Y1 - 2023
N2 - In recent years there has been an increasing interest in the use of relational event models for dynamic social network analysis. The basis of these models is the concept of an “event”, defined as a triplet of time, sender, and receiver of some social interaction. The key question that relational event models aim to answer is what drives the pattern of social interactions among actors. Researchers often consider a very large number of predictors in their studies (including exogenous effects, endogenous network effects, and interaction effects). However, employing an excessive number of effects may lead to overfitting and inflated Type-I error rates. Moreover, the fitted model can easily become overly complex and the implied social interaction behavior difficult to interpret. A potential solution to this problem is to apply Bayesian regularization using shrinkage priors to recognize which effects are truly nonzero (the “wheat”) and which effects can be considered as (largely) irrelevant (the “chaff”). In this paper, we propose Bayesian regularization methods for relational event models using four different priors for both an actor and a dyad relational event model: a flat prior model with no shrinkage, a ridge estimator with a normal prior, a Bayesian lasso with a Laplace prior, and a horseshoe prior. We apply these regularization methods in three different empirical applications. The results reveal that Bayesian regularization can be used to separate the wheat from the chaff in models with a large number of effects by yielding considerably fewer significant effects, resulting in a more parsimonious description of the social interaction behavior between actors in dynamic social networks, without sacrificing predictive performance.
AB - In recent years there has been an increasing interest in the use of relational event models for dynamic social network analysis. The basis of these models is the concept of an “event”, defined as a triplet of time, sender, and receiver of some social interaction. The key question that relational event models aim to answer is what drives the pattern of social interactions among actors. Researchers often consider a very large number of predictors in their studies (including exogenous effects, endogenous network effects, and interaction effects). However, employing an excessive number of effects may lead to overfitting and inflated Type-I error rates. Moreover, the fitted model can easily become overly complex and the implied social interaction behavior difficult to interpret. A potential solution to this problem is to apply Bayesian regularization using shrinkage priors to recognize which effects are truly nonzero (the “wheat”) and which effects can be considered as (largely) irrelevant (the “chaff”). In this paper, we propose Bayesian regularization methods for relational event models using four different priors for both an actor and a dyad relational event model: a flat prior model with no shrinkage, a ridge estimator with a normal prior, a Bayesian lasso with a Laplace prior, and a horseshoe prior. We apply these regularization methods in three different empirical applications. The results reveal that Bayesian regularization can be used to separate the wheat from the chaff in models with a large number of effects by yielding considerably fewer significant effects, resulting in a more parsimonious description of the social interaction behavior between actors in dynamic social networks, without sacrificing predictive performance.
KW - Bayesian lasso
KW - Bayesian regularization
KW - Horseshoe prior
KW - Relational event data
KW - Shrinkage priors
UR - http://www.scopus.com/inward/record.url?scp=85151011300&partnerID=8YFLogxK
U2 - 10.1016/j.socnet.2023.02.006
DO - 10.1016/j.socnet.2023.02.006
M3 - Article
SN - 0378-8733
VL - 74
SP - 139
EP - 155
JO - Social Networks
JF - Social Networks
ER -