Solving SDP's in Non-commutative Algebras Part I: The Dual-Scaling Algorithm

E. de Klerk, D.V. Pasechnik

Research output: Working paperDiscussion paperOther research output

401 Downloads (Pure)

Abstract

Semidefinite programming (SDP) may be viewed as an extension of linear programming (LP), and most interior point methods (IPM s) for LP can be extended to solve SDP problems.However, it is far more difficult to exploit data structures (especially sparsity) in the SDP case.In this paper we will look at the data structure where the SDP data matrices lie in a low dimensional matrix algebra.This data structure occurs in several applications, including the lower bounding of the stability number in certain graphs and the crossing number in complete bipartite graphs.We will show that one can reduce the linear algebra involved in an iteration of an IPM to involve matrices of the size of the dimension of the matrix algebra only.In other words, the original sizes of the data matrices do not appear in the computational complexity bound.In particular, we will work out the details for the dual scaling algorithm, since a dual method is most suitable for the types of applications we have in mind.
Original languageEnglish
Place of PublicationTilburg
PublisherOperations research
Number of pages13
Volume2005-17
Publication statusPublished - 2005

Publication series

NameCentER Discussion Paper
Volume2005-17

Keywords

  • semidefinite programming
  • matrix algebras
  • dual scaling algorithm
  • exploiting data structure

Fingerprint

Dive into the research topics of 'Solving SDP's in Non-commutative Algebras Part I: The Dual-Scaling Algorithm'. Together they form a unique fingerprint.

Cite this