Abstract
This paper focuses on a setting with observations having a cluster dependence structure and presents two main impossibility results. First, we show that when there is only one large cluster, i.e., the researcher does not have any knowledge on the dependence structure of the observations, it is not possible to consistently discriminate the mean. When within-cluster observations satisfy the uniform central limit theorem, we also show that a sufficient condition for consistent n−−√-discrimination of the mean is that we have at least two large clusters. This result shows some limitations for inference when we lack information on the dependence structure of observations. Our second result provides a necessary and sufficient condition for the cluster structure that the long run variance is consistently estimable. Our result implies that when there is at least one large cluster, the long run variance is not consistently estimable.
Original language | English |
---|---|
Article number | 105524 |
Journal | Journal of Econometrics |
Volume | 237 |
Issue number | 2 |
DOIs | |
Publication status | Published - Dec 2023 |
Keywords
- Cluster dependence
- Consistent discrimination
- Consistent estimation of long-run variance
- Local dependence
- Log likelihood process
- Unknown dependence structure