Abstract
Visually-grounded models of spoken language understanding extract semantic information directly from speech, without relying on transcriptions. This is useful for low-resource languages, where transcriptions can be expensive or impossible to obtain. Recent work showed that these models can be improved if transcriptions are available at training time. However, it is not clear how an end-to-end approach compares to a traditional pipeline-based approach when one has access to transcriptions. Comparing different strategies, we find that the pipeline approach works better when enough text is available. With low-resource languages in mind, we also show that translations can be effectively used in place of transcriptions but more data is needed to obtain similar results.
Original language | English |
---|---|
Title of host publication | Findings of the Association for Computational Linguistics: EMNLP 2020 |
Place of Publication | Online |
Publisher | Association for Computational Linguistics |
Pages | 2698-2709 |
Number of pages | 12 |
DOIs | |
Publication status | Published - Nov 2020 |
Event | 2020 Conference on Empirical Methods in Natural Language Processing - Online Duration: 16 Nov 2020 → 20 Nov 2020 https://2020.emnlp.org/ |
Conference
Conference | 2020 Conference on Empirical Methods in Natural Language Processing |
---|---|
Abbreviated title | EMNLP 2020 |
Period | 16/11/20 → 20/11/20 |
Internet address |