Abstract
We provide new tools for worst-case performance analysis of the gradient (or steepest descent) method of Cauchy for smooth strongly convex functions, and Newton's method for self-concordant functions, including the case of inexact search directions. The analysis uses semidefinite programming performance estimation, as pioneered by Drori and Teboulle [it Math. Program., 145 (2014), pp. 451--482], and extends recent performance estimation results for the method of Cauchy by the authors [it Optim. Lett., 11 (2017), pp. 1185--1199]. To illustrate the applicability of the tools, we demonstrate a novel complexity analysis of short step interior point methods using inexact search directions. As an example in this framework, we sketch how to give a rigorous worst-case complexity analysis of a recent interior point method by Abernethy and Hazan [it PMLR, 48 (2016), pp. 2520--2528].
Original language | English |
---|---|
Pages (from-to) | 2053–2082 |
Journal | SIAM Journal on Optimization |
Volume | 30 |
Issue number | 3 |
Publication status | Published - Jul 2020 |
Keywords
- performance estimation problems
- gradient method
- inexact search direction
- semidefinite programming
- interior point methods